A Study of Exponential Neighborhoods for theTravelling Salesman Problem and for theQuadratic Assignment

نویسنده

  • Gerhard J. Woeginger
چکیده

This paper deals with so-called exponential neighborhoods for combinatorial optimization problems, i.e. with large sets of feasible solutions whose size grows exponentially with the input length. We are especially interested in exponential neighborhoods over which the TSP (respectively, the QAP) can be solved in polynomial time, and we investigate combinatorial and algorithmical questions related to such neighborhoods. First, we perform a careful study of exponential neighborhoods for the TSP. We investigate neighborhoods that can be deened in a simple way via assignments, matchings in bipartite graphs, partial orders, trees and other combinatorial structures. We identify several properties of these combinatorial structures that lead to polynomial time optimization algorithms, and we also provide variants that slightly violate these properties and lead to NP-complete optimization problems. Whereas it is relatively easy to nd exponential neighborhoods over which the TSP can be solved in polynomial time, the corresponding situation for the QAP looks pretty hopeless: Every exponential neighborhood that is considered in this paper provably leads to an NP-complete optimization problem for the QAP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approach for Solving Traveling Salesman Problem

In this paper, we introduce a new approach for solving the traveling salesman problems (TSP) and provide a solution algorithm for a variant of this problem. The concept of the proposed method is based on the Hungarian algorithm, which has been used to solve an assignment problem for reaching an optimal solution. We introduced a new fittest criterion for crossing over such problems, and illu...

متن کامل

Parallelizing Assignment Problem with DNA Strands

Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...

متن کامل

New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problems (GTSP)

Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to fi...

متن کامل

A Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...

متن کامل

A reactive bone route algorithm for solving the traveling salesman problem

The traveling salesman problem (TSP) is a well-known optimization problem in graph theory, as well as in operations research that has nowadays received much attention because of its practical applications in industrial and service problems. In this problem, a salesman starts to move from an arbitrary place called depot and after visits all of the nodes, finally comes back to the depot. The obje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998